
Partial Differential Equations
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In general there does not exist a solution to the over

solution obviously does exist if and only if
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and therefore determine those vectors

vectors belong to and thus have the form

These eigenvectors also serve to represent the corresponding solution,

This, the fact that , and the linear independence of the
satisfy the three equations

As expected, the contribution
indeterminate. These ideas fromlinear
Eq.(6.1), can be extended to corresponding systems of partial differential
Maxwell field equations, which we shall analalyze using

this extension the scalar entries of
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waveequations corresponding to what in physics and engineering are called
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Single Partial Differential Equations: Their Origin

There are many phenomena in nature, which, even though occuring over finite regions of space 
and time, can be described in terms of properties that prevail at each
separately. This description originated with Newton, who with the aid
showed us how to grasp a global phenomenon,

means of a locally applied law, for example

This manner of making nature comprehensible has been extended from the motion of
point particles to the behavior of other forms of matter and energy, be it in the form of gasses, 
fluids, light, heat, electricity, signals traveling along optical fibers and neurons, or even 
gravitation.

This extension consists of formulating or stating
phenomenon, and then solving that differential
properties of the phenomenon.

There exist many partial differential
basically only three types of partial differential

They are exemplified by

1. Laplaces equation

which governs electrostatic and magnetic fields as well as the velocity potential of an 
incompressible fluid, by

2. the wave equation

for electromagnetic or sound vibrations, and by

for the vibrations of a simple string, and by

Single Partial Differential Equations: Their Origin

There are many phenomena in nature, which, even though occuring over finite regions of space 
and time, can be described in terms of properties that prevail at each point ofspace and time 
separately. This description originated with Newton, who with the aid of his differential calculus 
showed us how to grasp a global phenomenon, for example, the elliptic orbit of a planet, by 

for example .

This manner of making nature comprehensible has been extended from the motion of
particles to the behavior of other forms of matter and energy, be it in the form of gasses, 
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3. the diffusion equation

for the temperature in three dimensional space and in time, or by

for the temperature along a uniform rod.

Boundary Conditions of a Typical Partial Differential Equation in Two Dimensions:

For the purpose of simplicity, we shall start our
only two variables and linear in the second

Such an equation is called a quasilinear second order partial differential

expression where linear in

then the equation would be a linear p.d.e., but this need not be the case.

The equation has a nondenumerable infinity o

the to-be-found function
at the boundary of the domain of the p.d.e.

In three dimensional space, this boundary
a boundary line which can be specified by the parametrized curve

in three dimensional space and in time, or by

along a uniform rod.
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where is the arclength parameter

The tangent to this curve has components

They satisfy

The normal to this boundary curve has 

We assume that points towards the
this is not the case, we reverse the signs of the components of it.

The additional conditions which the to
this boundary curve, and they are conditions on the partial

function evaluated at the curve.

The boundary curve accomodates three important types ofboundary

is the arclength parameter

The tangent to this curve has components

curve has components

points towards the interior of the domain where the solution is to be found. If 
this is not the case, we reverse the signs of the components of it.

The additional conditions which the to-be-found solution is to satisfy are 
curve, and they are conditions on the partial derivatives and the value of the 

evaluated at the curve.

curve accomodates three important types ofboundary conditions.

of the domain where the solution is to be found. If 

is to satisfy are imposed at 
and the value of the 



1. Dirichlet conditions:

2. Neumann conditions:
specified at each point of

3. Cauchy conditions:

parameter is usually a time parameter. Con
called intial value conditions

There exists also the mixed Dirichlet
Dirichlet and the Neumann boundary

Here , , and

We recall that in the theory of ordinary second order differential
obtained once the solution and its derivative were specified at a point. The generalization of this 
condition to partial differential equationsconsists of the Cauchy

Consequently, we now inquire whether the solution of the partial differential

uniquely determined by specifying Cauchy

is specified at each point of the boundary.

, the normal componet of the graident of
point of the boundary.

and are specified at each point of the

is usually a time parameter. Consequently, Cauchy conditions are also 
intial value conditions orinitial value data or simply Cauchy data.

mixed Dirichlet-Neumann conditions. They are intermediate between the 
boundary conditions, and they are given by

are understood to be given on the boundary.

We recall that in the theory of ordinary second order differential equations, a unique solution was 
its derivative were specified at a point. The generalization of this 
equationsconsists of the Cauchy boundary conditions.

Consequently, we now inquire whether the solution of the partial differential equation

determined by specifying Cauchy boundary conditions on the boundary

, the normal componet of the graident of is 

boundary. The 

sequently, Cauchy conditions are also 
.

conditions. They are intermediate between the 

equations, a unique solution was 
its derivative were specified at a point. The generalization of this 

conditions.

equation is 

boundary .



Cauchy Problem and Characteristics

In order to compute the function
Taylor series on twodimensions;

Here the derivatives are to be evaluated on the

The problem we are confronted with is this:

Determine all partial derivatives, starting with the first partials on up from the given 
Cauchy boundary conditions, the givenboundary, and the given partial d

We shall do this first for the first

From the Cauchy data we obtain two

From these we obtain the first partial

The procurement of the second derivatives
first derivatives along the boundary. Together with the given p.d.e. we have

Cauchy Problem and Characteristics:

at points off theboundary curve, we resort to the 

are to be evaluated on the boundary.

The problem we are confronted with is this:

derivatives, starting with the first partials on up from the given 
conditions, the givenboundary, and the given partial differential equation!

the first derivatives.

From the Cauchy data we obtain two equations

From these we obtain the first partial derivatives of evaluates on the boundary

derivatives is more interesting. We differentiate the (known) 
boundary. Together with the given p.d.e. we have

curve, we resort to the 

derivatives, starting with the first partials on up from the given 
ifferential equation!
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The left hand sides of these three
coefficients of the three unknown partial
these partial derivatives unless

or

If this determinant does not vanish, one can solve for the secondderivatives
the boundary. Differentiating along theboundary

The left hand sides of these three equations are known along the whole boundary. So are the 
coefficients of the three unknown partial derivatives on the right hand side. One can solve for 

If this determinant does not vanish, one can solve for the secondderivatives evaluated on
boundary. Differentiating along theboundary yields

boundary. So are the 
on the right hand side. One can solve for 

evaluated on



Subscripts refer to partial derivatives. The last equation was obtained differentiating the given 

p.d.e. with respect to . The left hand side contains only lower 
known on the boundary.

We see that one can solve for

on the boundary unless the determinant, the same one as before, vanishes. It is evident that one 
can continue the process of solving for the other higher order
determinant of the system does not vanish. We are led to the conclusion that one can 

expand in a Taylor series at every point of the
the series are uniquely determined by the Cauchy

We must now examine the vanishing of the system determinant

at every point of the domain of the partial differential equation.

Depending on the coefficients

characteristic curves,

point . We distinguish between three cases:

1. : elliptic type
conjugates of each other.

2. : hyperbolic type

and are real. They sre two curves intersecting at
obtains two distinct families.

derivatives. The last equation was obtained differentiating the given 

. The left hand side contains only lower order derivatives, which are 

unless the determinant, the same one as before, vanishes. It is evident that one 
can continue the process of solving for the other higher order derivatives, provided the 
determinant of the system does not vanish. We are led to the conclusion that one can 

in a Taylor series at every point of the boundary and that the coefficients of 
the series are uniquely determined by the Cauchy boundary conditions on the given

We must now examine the vanishing of the system determinant

at every point of the domain of the partial differential equation.

, , and , this quadratic form determines two 

and , through each 

. We distinguish between three cases:

elliptic type in which the two characteristics and

hyperbolic type in which case for each the characteristics

They sre two curves intersecting at . As one varies
obtains two distinct families.

derivatives. The last equation was obtained differentiating the given 

derivatives, which are 

unless the determinant, the same one as before, vanishes. It is evident that one 
provided the 

determinant of the system does not vanish. We are led to the conclusion that one can 

and that the coefficients of 
on the given boundary.
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are complex 
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3. : parabolic type

These three cases imply three different types of differentialequations. By utilizing the 
characteristic, one can introduce newcoordinates
type assumes a standard normal form. Let the new coordinate surfaces be

Then the coordinate transformation

yields a normal form of the elliptic type

By contrast the coordinate transformation

yields a normal form of the hyperbolic type

Finally, the coordinate transformation

yields a normal form of the parabolic type

We recognize that elliptic partial differential
phenomenon.

parabolic type in which there is only one family of characteristics.

These three cases imply three different types of differentialequations. By utilizing the 
acteristic, one can introduce newcoordinates relative to which a differential equation of each 

type assumes a standard normal form. Let the new coordinate surfaces be

Then the coordinate transformation

elliptic type,

contrast the coordinate transformation

hyperbolic type,

Finally, the coordinate transformation

parabolic type,

partial differential equations express anequilibrium or a static potential 

in which there is only one family of characteristics.

These three cases imply three different types of differentialequations. By utilizing the 
relative to which a differential equation of each 
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or a static potential 



By introducing the standard coordinates

in terms of which

one finds that

the wave equation of a general vibrating string. We, therefore, recognize that a
equation expresses the phenomenon 

Finally, a parabolic p.d. equation expresses a diffusion process. In fact, the two 
dimensional Laplace equation, the
equation are the simplest possible

Hyperbolic Equations:

The quadratic form, Eq.(6.12), determined by the coefficients
can be factored into two ordinarydifferential

These are the equations for the two

Their significance, we recall, is this: if the
specifying Cauchy data on it will not
intersects each family only once, then the Cauchy data

coordinates

the wave equation of a general vibrating string. We, therefore, recognize that a hyperbolic
equation expresses the phenomenon of a propagating wave or disturbance.

Finally, a parabolic p.d. equation expresses a diffusion process. In fact, the two 
, the equation for a vibrating sting, and the heat conduction 

are the simplest possible examples of elliptic, hyperoblic, and parabolic

The quadratic form, Eq.(6.12), determined by the coefficients , , and of the given p.d.e. 
ordinarydifferential equation

two families of characteristic curvesof the given p.d.e.

significance, we recall, is this: if the boundary line coincides with one of them, then 
will not yield a unique solution. If, however, the bou

intersects each family only once, then the Cauchy data will yields a unique solution.

hyperbolic p.d. 

heat conduction 
parabolic equations.

of the given p.d.e. 

of the given p.d.e.

line coincides with one of them, then 
boundary line 

yields a unique solution.



This point becomes particularly transparent if one introduces the curvilinear

and relative to which the given p.d.e. assumes its standard form,
consider the hyperbolic case by assuming that

throughout the domain.

We shall demand the new coordinates
property that their isograms (``loci of points of constant values'') conta

, i.e.,

for all . This implies that

where, as usual

Substituting these equations into Eq.(6.12), the
obtains

This point becomes particularly transparent if one introduces the curvilinear coordinates

to which the given p.d.e. assumes its standard form, Eq.(>6.13). We shall 
consider the hyperbolic case by assuming that

coordinates and - thecharacteristic coordinates
property that their isograms (``loci of points of constant values'') contain the characteristic lines

into Eq.(6.12), the equation for the characteristic directions, one 

coordinates

Eq.(>6.13). We shall 

coordinates - have the 
in the characteristic lines

for the characteristic directions, one 
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An equation with the same coefficients is obtained for

solutions and
the hyperbolic equation, give us the new curvilinear coordinate system

The partial derivatives of the given differential

Here refers to additional terms involving only the first partial derivatives of
these expressions into the given p.d.equation, one obtains

It follows from Equation 6.14 that the coefficients of
yields Equation > 6.13, the hyperbolicequation

The coordinates and , whose surfaces contain the characteristic lines, are called 
the characteristic coordinates or

with the same coefficients is obtained for the otherfunction

are real valued functions. Their isograms, the characteristics
equation, give us the new curvilinear coordinate system

ivatives of the given differential equation are now as follows

refers to additional terms involving only the first partial derivatives of
these expressions into the given p.d.equation, one obtains

6.14 that the coefficients of and vanish. Solving for
> 6.13, the hyperbolicequation in normal form.

, whose surfaces contain the characteristic lines, are called 
or null coordinates of the hyperbolic equation.

. The two 

characteristics of 

refers to additional terms involving only the first partial derivatives of . Inserting 
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vanish. Solving for

, whose surfaces contain the characteristic lines, are called 



These coordinates are important for at least two reasons. First of all, they are boundaries across 

which a solution can be nonanalytic. If

where has constant value'') of the solution to Eq.(6.14), then the first term of the p.d. Eq.(6.15)

even if as

first derivative has a discontinuity across the characteristic

exist solutions to Eq.(6.15) whose first derivative

whenever satisfies Eq.(6.14) with

Secondly, these coordinates depict the history of a moving disturbance. The simple string 
illustrates the issue involved.

Example: The Simple string The governing

Its characteristic coordinates are the

and its normal form is

The solution is

are important for at least two reasons. First of all, they are boundaries across 

which a solution can be nonanalytic. If is one of the isograms (``locus of points 

value'') of the solution to Eq.(6.14), then the first term of the p.d. Eq.(6.15)

. In other words, there aresolutions to Eq.(6.15) for which the 

has a discontinuity across the characteristic . Similarly, there 

Eq.(6.15) whose first derivative has a discontinuity across

satisfies Eq.(6.14) with replaced by .

depict the history of a moving disturbance. The simple string 

The governing equation is

are the ``retarded'' and the ``advanced'' times

are important for at least two reasons. First of all, they are boundaries across 

is one of the isograms (``locus of points 

value'') of the solution to Eq.(6.14), then the first term of the p.d. Eq.(6.15)

Eq.(6.15) for which the 

. Similarly, there 

has a discontinuity across

depict the history of a moving disturbance. The simple string 



where and are any functions of

Next consider the initial value data at

These equations imply

Consider the intersection of the two
the figure below.

functions of and .

Next consider the initial value data at :

Consider the intersection of the two families of characteristics with the boundaryboundary line as in 


